The Fast Johnson–Lindenstrauss Transform and Approximate Nearest Neighbors
نویسندگان
چکیده
منابع مشابه
Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration
For many computer vision problems, the most time consuming component consists of nearest neighbor matching in high-dimensional spaces. There are no known exact algorithms for solving these high-dimensional problems that are faster than linear search. Approximate algorithms are known to provide large speedups with only minor loss in accuracy, but many such algorithms have been published with onl...
متن کاملRandomized approximate nearest neighbors algorithm.
We present a randomized algorithm for the approximate nearest neighbor problem in d-dimensional Euclidean space. Given N points {x(j)} in R(d), the algorithm attempts to find k nearest neighbors for each of x(j), where k is a user-specified integer parameter. The algorithm is iterative, and its running time requirements are proportional to T·N·(d·(log d) + k·(d + log k)·(log N)) + N·k(2)·(d + l...
متن کاملFast Nearest Neighbors
We present a review of the literature on fast nearest neighbors using the basic approach from Karger and Ruhl [4] and a recent technique called cover trees. A small error in Insert procedure from the original paper on cover trees is corrected and an examination of how query time actually varies with the size of the problem is shown using a Python implementation of the basic cover tree algorithms.
متن کاملFast reciprocal nearest neighbors clustering
This paper presents a novel approach for accelerating the popular Reciprocal Nearest Neighbors (RNN) clustering algorithm, i.e. the fast-RNN. We speed up the nearest neighbor chains construction via a novel dynamic slicing strategy for the projection search paradigm. We detail an efficient implementation of the clustering algorithm along with a novel data structure, and present extensive experi...
متن کاملApproximate Nearest Neighbors Algorithm - a short version
dimensional Euclidean space. Given N points {xj} in Rd, the algorithm attempts to find k nearest neighbors for each of xj , where k is a user-specified integer parameter. The algorithm is iterative, and its CPU time requirements are proportional to T ·N ·(d ·(log d)+ k · (d + log k) · (log N)) + N · k2 · (d + log k), with T the number of iterations performed. The memory requirements of the proc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Computing
سال: 2009
ISSN: 0097-5397,1095-7111
DOI: 10.1137/060673096